Mapping of the ligand-selective domain of the Xenopus laevis corticotropin-releasing factor receptor 1: implications for the ligand-binding site.

نویسندگان

  • F M Dautzenberg
  • S Wille
  • R Lohmann
  • J Spiess
چکیده

The nonselective human corticotropin-releasing factor receptor 1 (hCRF-R1) and the ligand-selective Xenopus CRF-R1 (xCRF-R1) were compared. To understand the interactions of sauvagine and ovine CRF, both high-affinity ligands for hCRF-R1 but surprisingly weak ligands for xCRF-R1, chimeric receptors of hCRF-R1 and xCRF-R1 followed by double or multiple point mutations were constructed. Binding studies and cAMP assays demonstrated that the N-terminal domain exhibited the complete ligand selectivity of xCRF-R1. The important region was mapped between amino acids 70 and 89; replacement of amino acids Arg76, Asn81, Gly83, Leu88, and Ala89 in hCRF-R1 with the corresponding amino acids of xCRF-R1 (Gln76, Gly81, Val83, His88, and Leu89) resulted in a receptor that had approximately 30-fold higher affinity for human/rat CRF than for sauvagine. Mutagenesis of these amino acids in xCRF-R1 to the human sequence completely abolished the ligand selectivity of xCRF-R1. Mutagenesis of amino acids 88 and 89 in hCRF-R1 or xCRF-R1 had only a minor (approximately 2.5-fold) effect on the ligand selectivity of the mutant receptor. Substitution of Arg76, Asn81, and Gly83 in hCRF-R1 with the corresponding sequence of xCRF-R1 (Gln76, Gly81, and Val83) resulted in a receptor with approximately 11-fold higher affinity for human/rat CRF compared with ovine CRF or sauvagine. When only two of these three amino acids were mutated, no effect on the ligand selectivity was observed. On the basis of these data, it is suggested that amino acids 70-89 of CRF-R1 are important for the ligand binding site.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular Docking Based on Virtual Screening, Molecular Dynamics and Atoms in Molecules Studies to Identify the Potential Human Epidermal Receptor 2 Intracellular Domain Inhibitors

Human epidermal growth factor receptor 2 (HER2) is a member of the epidermal growth factor receptor family having tyrosine kinase activity. Overexpression of HER2 usually causes malignant transformation of cells and is responsible for the breast cancer. In this work, the virtual screening, molecular docking, quantum mechanics and molecular dynamics methods were employed to study protein–ligand ...

متن کامل

In Silico Analysis of the Conservation of Human Toxicity and Endocrine Disruption Targets in Aquatic Species

Pharmaceuticals and industrial chemicals, both in the environment and in research settings, commonly interact with aquatic vertebrates. Due to their short life-cycles and the traits that can be generalized to other organisms, fish and amphibians are attractive models for the evaluation of toxicity caused by endocrine disrupting chemicals (EDCs) and adverse drug reactions. EDCs, such as pharmace...

متن کامل

The S362A mutation block ROMK2 (Kir1.1b) endocytosis in Xenopus laevis oocyte membrane .

Abstract The S362A mutation block ROMK2 (Kir1.1b) endocytosis in Xenopus laevis oocyte membrane . Saeed Hajihashemi1 , 1-Assistant professor, PhD in Physiology, Department of Physiology, School of Medical science, Arak University of Medical Sciences. Introduction: ROMK channel is localized on the apical membrane of the nephron. Recent studies suggest that endocytosis of ROMK chan...

متن کامل

P-231: Androgen Receptor Gene Expression in Azoospermia Men

Background: Androgens are critical steroid hormones in progression of spermatogenesis process and determine the male phenotype that their actions are mediated by the androgen receptor (AR), a member of the nuclear receptor superfamily. In the Androgen receptor, transactivation domain encoded by exon 1, DNA binding domain encoded by exons 2 and 3, hinge region encoded by part of exon 4, and C-te...

متن کامل

Integrin Linked Kinase (X-ILK) Function during Embryonic Development and within Adult Tissues of Xenopus laevis

Integrin linked kinase (ILK) is a serine/threonine protein kinase implicated in the phosphatidylinositol 3’kinase (PI3’K) pathway. Integrin linked kinase has been investigated in different organisms such as mammalian systems (human, mice, rat), insects (Drosophila) and nematodes (Cenorhabditis elegans), however to date little data regarding ILK research on amphibians has been reported. In...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 95 9  شماره 

صفحات  -

تاریخ انتشار 1998